COORDINATE GEOMETRY SOLVED QUESTIONS

COORDINATE GEOMETRY QUESTIONS

 1.  Find the coordinates of the point of intersection of the medians of triangle MNO; given M = (-2, 3), N = (6, 7), O = (4, 1).

1. (5/3, 1/3)

2. (3/8, 3/11)

3. (8/3, 11/3)

4. (5/3, 17/3)

Sol: Option 3

Point of intersection of medians is called as centroid, at which each median is divided in the ratio 2 : 1. Firstly find the midpoint of NO and take it as P

 

Take the point C, where medians meet and it will divide the median MP in the ratio 2: 1.

 

2.  In which quadrant does the given point (-2, 3) lies?

A - II

B - III

C - IV

D - I

Answer - A

Explanation

(-2, 3) lies in quadrant II.

3.  Find the distance between the points A (-4, 7) and B (2, 5).

A - 5

B - 6

C - 6√5

D - 7

Answer - C

Explanation

AB = √(2+4)2 + (-5-7)2 = √62+ (-12)2 = √36+144 = √180

=√36*5 = 6√5 units.

4.  Find the distance of the point A (6,-6) from the origin.

A - 5

B - 6

C - 6√5

D - 6√2

Answer - D

Explanation

OA = √62+ (-6)2 =√36+36 =√72 = √36*2 = 6√2 units.

5.  Show that the points A(0,-2) ,B(3,1) ,C(0,4) and D(-3,1) are the vertices of a square.

A - false

B - true

Answer - B

Explanation

 

AB2= (3-0)2+ (1+2)2= (9+9) =18

BC2= (0-3)2+ (4-1)2= (9+9) =18

CD2= (0-3)2+ (1+2)2= (9+9) =18

DA2= (-3-0)2+ (1+2)2= (9+9) =18   

∴ AB= BC=CD=DA = √18 = √9*2 = 3√2

AC2=(0-0)2+(4+2)2= (0+36) =36

BD2= (-3-3)2+ (1-1)2= (36+0) =36

∴ Diag AC = Diag BD = 6

Thus all sides are equal and the diagonals are equal.

∴ ABCD is a square.

6.  Show that the points P(-4,-1), Q(-2,-4), R(4,0), and S(2,3) are the vertices of a rectangle.

A - false

B - true

Answer - B

Explanation

PQ2= (-2+4)2+ (-4+1)2= 22+ (-3)2= (4+9) =13

QR2= (4+2)2+ (0+4)2= (62+42) = (36+16) =52

RS2= (2-4)2= (3-0)2= (-2)2+32= (4+9) = 13

SP2= (2+4)2+ (3+1)2= (62+42) = (36+16) = 52

∴ PQ=RS =√13 AND QR=SP =√52

PR2= (4+4)2+ (0+1)2= (82+12) = (64+1) =65

QS2= (2+2)2+ (3+4)2= (42+72) = (16+49) =65

∴ Diag PR= Diag QS =√ 65

Thus, opposite sides are equal and diagonals are equal.

∴ ABCD is a rectangle.

 

7.  Show that the points A (-3, 2), B (-5-5), C (2-3) and D (4, 4) are the vertices of a rhombus.

A - false

B - true

Answer - B

Explanation

AB2= (-5+3)2+ (-5-2)2= (-2)2+ (-7)2= (4+49) =53

BC2= (2+5)2+ (-3+5)2= (7)2+ (2)2= (49+4) =53

CD2= (4-2)2+ (4+3)2= (22+72) = (4+49) =53

DA2= (4+3)2+ (4-2)2= (72+22) = (49+4) =53

∴ AB=BC=CD=DA = √53                               

AC2= (2+3)2+ (-3-2)2= (52) + (-5)2= (25+25) = 50

BD2= (4+5)2+ (4+5)2= (92) + (92) = (81+81) =162

∴ Diag AC ≠ Diag BD

Thus all the sides are equal and diagonals are not equal.

∴ ABCD is a Rhombus.

8.  Discover the region of ABC whose vertices are A (10, - 6), B (2, 5), and C (- 1, 3).

A - 49/2 sq.units.

B - 47/2 sq.units.

C - 45/2 sq.units.

D - 43/2 sq.units.

Answer - A

Explanation

Here x1=10, x2=2, X3 = -1 and y1= - 6, y2= 5, y3= 3

∴ ∆= 1/2 {X1(y2-Y3) +x2(Y3-Y1) +X3 (Y1-Y2)}

=1/2 {10(5-3) +2(3+6) - 1(- 6-5) = 1/2 (20+18+11) =49/2 sq.units.

9. Discover the estimation of h for which the focuses A (- 1, 3), B (2, h), and C (5, - 1) are collinear.

A - 1

B - 2

C - 3

D - 4

Answer - A

Explanation

Here x1=-1, x2=2, x3=5 and y1=3, y2=h and Y3=-1

Now, ∆=0 ⇒ X1(y2-Y3) +x2(Y3-Y1) +X3(Y1-Y2) = 0

⇒ -1(h+1) +2(-1-3) +5(3-h) =0

⇒ -h-1-8+15-5h=0 ⇒ 6h=6 ⇒ h=1

10. Discover the co-ordinates of the centroid of ∆ABC whose vertices are A (6, - 2) and B (4, - 3) what's more, C (- 1, - 4).

A - (-3,-3)

B - (3,3)

C - (3,-3)

D - (-3,3)

Answer - C

Explanation

The directions of the centroid are

{(6+4-1)/3, (- 2-3-4)/3} i.e. (3, - 3)

11. Discover the proportion in which the point p (2, - 5) partitions the line portion AB joining A (- 3, 5) what’s more, B (4, - 9).

A - 1:2

B - 5:2

C - 2:5

D - 2:1

Answer - B

Explanation

Let the required proportion be x:1.

At that point (4x-3/x+1, - 9 x+5/x+1) concurs with p (2, - 5)

∴ 4x-3/ ( x+1) =2 ⇒ 4x-3 = 2x+2 ⇒ 2x=5 ⇒ x=5/2

∴ required proportion is 5/2:1 i.e. 5:2

12. Discover the slop of the line whose slant is 30°?

A - 1/√3

B - 2/√3

C - 3/√3

D - 4/√3

Answer - A

Explanation

m= tan 30° = 1/√3

13.Discover the slant of the line whose slope is 1/√3

A - 30°

B - 60°

C - 80°

D - Cannot be computed with the given information

Answer - A

Explanation

tan x = 1/√3 ⇒ x=30°

14. Discover the slop of the line which goes through focuses A (- 2, 3) and B (4, - 6).

A - 3/2

B - -3/2

C - 3/4

D - 3/5

Answer - B

Explanation

Slop of AB = y2-y1/x2-x1 = - 6-3/4+2 = - 9/6 = - 3/2

15. Discover the slop of the line whose mathematical statement is 3x+4y-5 = 0.

A - 3/4

B - -3/4

C - 1/4

D - -1/4

Answer - B

Explanation

3x+4y-5 = 0 ∴ 4y=-3x+5 ∴ y=-3/4x+5/4

∴ slop = m =-3/4

16. Discover the estimation of h for which the line 2x+3y-4 = 0 and hx+6y+5 =0 are parallel.

A - 2

B - 3

C - 4

D - 5

Answer - C

Explanation

2x+3y - 4 =0 ⇒ 3y= - 2x+4 ⇒y= - 2x/3 +4/3

hx+6y+5 =0 ⇒ 6y =-hx-5 ⇒ y= - hx/6 - 5/6

The line will be parallel if - h/6 -2/3 ⇒ h= (2/3*6) = 4

∴ h=4

17. Discover the estimation of h for which the lines 5x+3y +2=0 and 3x-hy+6= 0are perpendicular to each other.

A - 2

B - 3

C - 4

D - 5

Answer - D

Explanation

5x+3y+2 =0 = -5x-2 ⇒ y= -5x/3-2/3

3x- hy+6 =0 ⇒ hy =   3x+6 ⇒ y =3x/h+6/h

The line will be perpendicular to each other if -5/3* 3/h= -1 ⇒ h=5.

Hence h= 5.

18. In the event that the separation of the point p(x, y) from A (a, 0) is a+x, then y2=?

A - 2ax

B -4ax

C - 6ax

D - 8ax

Answer : B

Explanation

(x-a) 2+(y-o) 2= a+x

⇒ (x-a) 2+y2= (a+x) 2⇒y2=(x+a) 2-(x-a) 2= 4ax ⇒ y2=4ax

19. Find the equation of the line passing through (2, -1) and parallel to the line 2x – y = 4.

1. y= 2/5x- 1

2. Y= 5x-2

3. Y= 2x-5

4. None of these

Sol: Option 3

The given line is 2x – y = 4 ⇒ y = 2x – 4 (Converting into the form of y = mx + c)

Its slope = 2. The slope of the parallel line should also be 2.

Hence for the required line

m = 2 and (x1 , y1) = (2, -1).

Equation = (y-y1) / (x/x1) = (y2-y1) / (x2-x1)

⇒ (y-y1) / (x/x1) = m

⇒ y-y1 = m (x-x1) ⇒ y - (-1) = 2(x-2)

⇒ y = 2x – 5.

20.  Find the equation of straight line passing through (2, 3) and perpendicular to the line 3x + 2y + 4 = 0

1. y =5/3x- 2

2. 3Y=2x+5

3. 3Y=5x-2

4. None of these

Sol: Option 2

The given line is 3x + 2y + 4 = 0 or y = (-3x/2) - 2

Any line perpendicular to it will have slope = 2/3

Thus equation of line through (2, 3) and slope 2/3 is

(y – 3) = 2/3 (x – 2)

⇒ 3y – 9 = 2x – 4

⇒ 3y – 2x – 5 = 0.

21.  If the coordinates of the centroid of a triangle are (1, 3) and two of its vertices are (–7, 6) and  (8, 5), then the third vertex of the triangle is  
a. (23,143)(23,143)
b. (−23,−143)(−23,−143)
c. (2, –2)
d. (–2, 2) 
Sol: Let (x, y) be the coordinates of the third vertex of the triangle. Then −7+8+x3−7+8+x3 = 1 and 6+5+y3=36+5+y3=3  x + 1 = 3 and y + 11 = 9  x = 2 and y = –2  (x, y) = (2, –2)

22.  The ratio in which the line 3x + y – 9 = 0 divides the segment joining the points (1, 3) and (2, 7) is  
a. 3 : 4
b. 4 : 3
c. 2 : 3
d. 3 : 2 
Sol: Let the line 3x + y – 9 = 0 divide the segment joining the points (1, 3) and (2, 7) at point P in the ratio k : 1.
The point P is (2k+1k+1,7k+3k+1)(2k+1k+1,7k+3k+1)
P lies on 3x + y – 9 = 0
3(2k+1k+1)+7k+3k+1−9=03(2k+1k+1)+7k+3k+1−9=0
6k + 3 + 7k + 3 – 9k – 9 = 0 4k – 3 = 0 
k=34k=34
The ratio is or 3 : 4

23.  Find the area of a triangle whose vertices are (1, 1), (5, 2) and (7, 4)
Solution:
Here (x1,y1)(x1,y1) = (1, 1) , (x2,y2)(x2,y2) = (5, 2) and (x3,y3)(x3,y3) = (7, 4)
Area of the triangle = 12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
12(1(2−4)+5(4−1)+7(1−2))12(1(2−4)+5(4−1)+7(1−2))
12(−2+15−7)12(−2+15−7)
12(6)=312(6)=3 units

24. The distance between the points A(5, -7) and B(2, 3) is:

A.)  109

   B.) 57

   C.) 109

   D.) None of these

Answer: Option C

AB2 = (2 - 5)2 + (3 + 7)2 
=> (-3)2 + (10)2 
=> 9 + 100 => 109


25. In which quadrant does the point(9, 0) lie? 

   A.) x-axis

   B.) y-axis

   C.) 4th

   D.) None of these

Answer: Option 'A'

The point (9, 0) lies in the y-axis.


26. If the distance of the point P(x, y) from A(a, 0) is a + x, then y2 = ?

   A.) 8ax

   B.) 6ax

   C.) 4ax

   D.) 2ax

Answer: Option 'C'

(x-a)2+(y-0)2 = a + x 
= (x-a)2+y2 
= (a+x)2 => y2 = (x-a)2-(x-a)2-4ax => y2 = 4ax


27. Find the area of ΔABC whose vertices are A(2, -5), B(4, 9) and (6, -1). 

   A.) 9 units

   B.) 5 sq.units

   C.) 7 sq.units

   D.) 6 sq.units

Answer: Option 'D'

Here, x1 = 2, x2 = 4, x3 = 6 and y1 = -5, y2 = 9, y3 = -1
= 1/2 [2(9+1) + 4(-1+5) + 6(5-9)] 
= 1/2 [2(10) + 4(4) + 6(-4)] 
= 1/2 [20 + 16 - 24] 
= 1/2 [12] 
= 6 sq.units


28. Find the distance of the point A(4, -2) from the origin. 

   A.) 45 units

   B.) 25 units

   C.) 52 units

   D.) 72 units

Answer: Option 'B'

OA = 4 - 02+(-2 - 0)2 = 16+4 = 20 = 4 × 5 = 25 units


29. Find the distance between the points A(-4, 7) and B(2, -5).

   A.) 85 Units

   B.) 65 Units

   C.) 64 Units

   D.) None of these

Answer: Option 'B'

AB = (2+4)2 + (-5-7)2
= 62 + (-12)2
= 36+144 = 180
=36 × 5 = 65 units.


30. Find the value of k for which the points A(-2, 5), B(3, k), and C(6, 1) are collinear. 

   A.) 5

   B.) 4

   C.) 7

   D.) 1

Answer: Option 'D'

x>1 = -2, x>2 = 3, x>3 = 6 and y>1 = 5, y>2 = k, y>3 = -1 
Now Δ = 0 <=> -2(k + 1) + 3(-1 + 5) + 6(5 - k) = 0 
      <=> -2 (k+1) + 3(4) + 6(5-k) = 0 
      <=> -2k-2 + 12+30 -6k = 0 
      <=> 40 - 8k = 0 
      <=> -8k = -40 
      <=> k = 5.


31. Find the area of Δ ABC whose vertices are A(9, -5), B(3, 7) and (-2, 4). 

   A.) 29 units

   B.) 35.9 sq.units

   C.) 39 sq.units

   D.) 39.5 sq.units

Answer: Option 'C'

Here, x1 = 9, x2 = 3, x3 = -2 and y1 = -5, y2 = 7, y3 = 4
= 1/2 [9(7-4) + 3(4+5) + (-2)(-5-7)] 
= 1/2 [9(3) + 3(9) - 2(-12)] 
= 1/2 [27 + 27 + 24] 
= 1/2 [78] 
= 39 sq.units 


32.If for a line m = tanϑ > 0, then 

   A.) ϑ is acute

   B.) ϑ is obtuse

   C.) ϑ = 90°

   D.) ϑ = 60°

Answer: Option 'A'

m = tanϑ < 0 => is acute


33. Find the vertices of a triangle are A(2, 8), B(-4, 3) and (5, -1). The area of ΔABC is: 

   A.) 5 1/2 sq.units

   B.) 2 1/3 sq.units

   C.) 2 1/2 sq.units

   D.) None of these

Answer: Option 'C'

Here, x1 = 2, x2 = -4, x3 = 5 and y1 = 8, y2 = 2, y3 = -1
= 1/2 [2(3+1) - 4(-1-8) + 5(8-3)] 
= 1/2 [2(4) + 4(-9) + 5(5)] 
= 1/2 [16 - 36 + 25] 
= 1/2 [5] 
= 2 1/2 sq.units


34. In which quadrant does the point(1, 5) lie? 

   A.) 1st

   B.) 2nd

   C.) 3rd

   D.) 4th

Answer: Option 'A'

The point (1, 5) lies in 1st quadrant.


35. In which quadrant does the point(0, 9) lie? 

   A.) x-axis

   B.) y-axis

   C.) 3rd

   D.) None of these 

Answer: Option 'B'
The point (0, 9) lies in x-axis.


36. The points A(-4, 0), B(1, -4), and C(5, 1) are the vertices of 

   A.) An isosceles right angled triangle

   B.) An equilateral triangle

   C.) A scalene triangle

   D.) None of these

Answer: Option 'A'

AB2 = (1 + 4)2 + (-4 - 0)2 
= 25 + 16 = 41, 
BC2 = (5 - 1)2 + (1 + 4)2 = 42 + 52
= 16 + 25 = 41 
AC2 = (5 + 4)2 + (1 - 0)2 
= 81 + 1 = 82 
AB = BC and AB2 = BC2 = AC2 
ΔABC is an isosceles right angled triangle


37. The coordinates of the endpoints of a diameter AB of a circle are A(-6, 8) and B(-10, 6). Find the coordinates of its center. 

   A.) -8, 7

   B.) -7, 8

   C.) 7, -8

   D.) -8, -7

Answer: Option 'A'

The center O is the midpoint of AB. 
Co-ordinates of O are [(-6-10)/2, (8+6)/2] 
= -16/2, 14/2 
= (-8, 7)


38. The endpoints of a line segment AB are A(-6, 4) and B(12,24). Its midpoint is:

   A.) (14, 4)

   B.) (-4, 14)

   C.) (3, 14)

   D.) (-3, 14)

Answer: Option 'D'

Midpoint is C((-6+12)/2, (4+24)/2) 
(-6/2, 28/2) = (-3, 14)


39. Find the coordinates of a point P which divides the join of A(5, -4) and B(10, 8) in the ratio 3 : 2. 

   A.) 9, 5

   B.) 7, 8

   C.) 8, 7

   D.) 9, -7

Answer: Option 'C'

Required point is P = (mx2 + nx1)/m+n, (my2 + ny1)/m+n 
P((3(10) + 2(5))/5, (3(15) + 2(-5))/5) 
=(30 + 10)/5, (45-10)/5 
= P(8, 7)


40. Find the value of k for which the points A(-2, 6), B(5, k), and C(8, 3) are collinear. 

   A.) 5

   B.) 4

   C.) 7

   D.) 1

Answer: Option 'A'

x1 = -2, x2 = 5, x3 = 8 and y1 = 6, y2 = k, y3 = 3 
Now Δ = 0 <=> -2(k - 3) + 5(3 - 6) + 8(6 - k) = 0 
      <=> -2 (k-3) + 5(-3) + 8(6-k) = 0 
      <=> -2k + 6 - 15 + 48 - 8k = 0 
      <=> 39 - 10k = 0 
      <=> k = -(39/10) 
      <=> k = 3.9


41. A point C divides the join of A(2,5) and B(3,9) in the ratio 3 : 4. The coordinates of C are:

   A.) (15/7, 46/7)

   B.) (15/7, 47/7)

   C.) (15/7, 40/7)

   D.) None of these

Answer: Option 'B'

x1=2, x2=3 and y1=3, y2=7
= [(3 × 3 + 4 × 2)/7, (3 × 9 + 4 × 5)/7] 
= 9+6/7, 27+20/7 
= (15/7, 47/7)


42.P is a point on the x-axis at a distance of 4 units from the y-axis to its right. The coordinates of P are: 

   A.) (4, 0)

   B.) (0, 4)

   C.) (4, 4)

   D.) (-4, 4)

Answer: Option 'A'

The coordinates of P are A(4, 0)


43. If the points A(1, 2), B(2, 4), and C(k, 6) are collinear, then k =?

   A.) 3

   B.) -3

   C.) 4

   D.) -4

Answer: Option 'B'

x1 = 1, x2 = 2, x3 = k and y1 = 2, y2 = 4, y3 = 6 
= 1(4 - 6) + 2 (6 - 2) + k(2 - 4) 
= -2 + 12 - 4 + 2k - 4k = 0 
= 6 - 2k = 0 
= -2k = 6 
= k = -3.


44. Find the vertices of the triangle are A(2, 8), B(-4, 3) and (5, -1). The area of ΔABC is: 

   A.) 5 1/2 sq.units

   B.) 2 1/3 sq.units

   C.) 2 1/2 sq.units

   D.) None of these

Answer: Option 'C'

Here, x1 = 2, x2 = -4, x3 = 5 and y1 = 8, y2 = 2, y3 = -1
= 1/2 [2(3+1) - 4(-1-8) + 5(8-3)] 
= 1/2 [2(4) + 4(-9) + 5(5)] 
= 1/2 [16 - 36 + 25] 
= 1/2 [5] 
= 2 1/2 sq.units


45. The coordinates of the endpoints of a diameter AB of a circle are A(-6, 8) and B(-10, 6). Find the coordinates of its center. 

   A.) -8, 7

   B.) -7, 8

   C.) 7, -8

   D.) -8, -7

Answer: Option 'A'

The center O is the midpoint of AB. 
Co-ordinates of O are [(-6-10)/2, (8+6)/2] 
= -16/2, 14/2 
= (-8, 7)


46. Find the area of ΔABC whose vertices are A(9, -5), B(3, 7), and (-2, 4). 

   A.) 29 units

   B.) 35.9 sq.units

   C.) 39 sq.units

   D.) 39.5 sq.units

Answer: Option 'C'

Here, x1 = 9, x2 = 3, x3 = -2 and y1 = -5, y2 = 7, y3 = 4
= 1/2 [9(7-4) + 3(4+5) + (-2)(-5-7)] 
= 1/2 [9(3) + 3(9) - 2(-12)] 
= 1/2 [27 + 27 + 24] 
= 1/2 [78] 
= 39 sq.units 


47.If for a line m = tanϑ < 0, then 

   A.) ϑ is acute

   B.) ϑ is obtuse

   C.) ϑ = 90°

   D.) ϑ = 60°

Answer: Option 'B'

m = tanϑ < 0 => is obtuse


48. Find the distance between the points A(-4, 7) and B(2, -5).

   A.) 85 Units

   B.) 65 Units

   C.) 64 Units

   D.) None of these

Answer: Option 'B'

AB = (2+4)2 + (-5-7)2
= 62 + (-12)2
= 36+144 = 180
=36 × 5 = 65 units.


49. The distance between the points A(5, -7) and B(2, 3) is:

   A.) 109

   B.) 57

   C.) 109

   D.) None of these

Answer: Option 'C'

AB2 = (2 - 5)2 + (3 + 7)2 
=> (-3)2 + (10)2 
=> 9 + 100 => 109


50. In which quadrant does the point(9, 0) lie? 

   A.) x-axis

   B.) y-axis

   C.) 4th

   D.) None of these

Answer: Option 'A'

The point (9, 0) lies in the y-axis.


51. The points A(0, 6), B(-5, 3) and C(3, 1) are the vertices of a triangle which is ? 

   A.) equilateral

   B.) right angled

   C.) isosceles

   D.) scalene

Answer: Option 'C'

AB2= (-5 - 0)2 + (-3 - 0)2 = 16 + 9 = 25 
BC2 = (3 + 5)2 + (1-3)2 = 82 + (-2)2 = 64 + 4 = 68 
AC2 = (3 - 0)2 + (1 - 6)2 = 9 + 25 = 34. 
AB = AC. ==> ΔABC is isosceles.


52. A point C divides the join of A(2,5) and B(3,9) in the ratio 3 : 4. The co-ordinates of C are:

   A.) (15/7, 46/7)

   B.) (15/7, 47/7)

   C.) (15/7, 40/7)

   D.) None of these

Answer: Option 'B'

x1=2, x2=3 and y1=3, y2=7
= [(3 × 3 + 4 × 2)/7, (3 × 9 + 4 × 5)/7] 
= 9+6/7, 27+20/7 
= (15/7, 47/7)


53. If the points A(1, 2), B(2, 4), and C(k, 6) are collinear, then k =?

   A.) 3

   B.) -3

   C.) 4

   D.) -4

Answer: Option 'B'

x1 = 1, x2 = 2, x3 = k and y1 = 2, y2 = 4, y3 = 6 
= 1(4 - 6) + 2 (6 - 2) + k(2 - 4) 
= -2 + 12 - 4 + 2k - 4k = 0 
= 6 - 2k = 0 
= -2k = 6 
= k = -3.


54. P is a point on the x-axis at a distance of 4 units from the y-axis to its right. The coordinates of P are: 

   A.) (4, 0)

   B.) (0, 4)

   C.) (4, 4)

   D.) (-4, 4)

Answer: Option 'A'

The coordinates of P are A(4, 0)


55. Find the distance of the point A(4, -2) from the origin. 

   A.) 45 units

   B.) 25 units

   C.) 52 units

   D.) 72 units

Answer: Option 'B'

OA = 4 - 02+(-2 - 0)2 = 16+4 = 20 = 4 × 5 = 25 units


56. In which quadrant does the point(-4, -7) lie?

   A.) 1st

   B.) 2nd

   C.) 3rd

   D.) 4th

Answer: Option 'C'

The point (-4, -7) lies in 3rd quadrant. 


57. The vertices of a quadrilateral ABCD are A(0, 0), B(3,3), C(3, 6), and D(0, 3). Then, ABCD is a 

   A.) square

   B.) parallelogram

   C.) rectangle

   D.) rhombus

Answer: Option 'B'

AB2 = (3-0)2 + (3-0)2 = 18 
BC2 = (3-3)2 + (6-3)2 = 9 
CD2 = (0-3)2 + (3-6)2 =18 
AD2 = (0-0)2 + (3-0)2 = 9 
AB = CD = 18 => 32, 
BC = AD = 9 
AC2 = (3-0)2 + (6-0)2 = 9 + 36 = 45 
BD2 = (0-3)2 + (3-3)2 = 9 + 0 = 9 
AC BD 
ABCD is a parallelogram.

Comments