Inequations Solved Questions

Inequations Questions

1. Solve x>15
Solution: We cannot cross multiply since we don’t know whether x is positive or negative.
Case 1: If x > 0
  5 > x
  x < 5
 So  0 < x < 5
 Case 2: If x < 0
  5 < x
  x > 5
 No solution.
 So Solution set for given inequation is 0 < x < 5.

2. Solve: x+3/x+4 ≥ 1
Solution:  
x+3/x+4−1 ≥ 0
(x+3−x−4)/x+4 ≥ 0
−1/x+4 > 0
[a/b > 0  and  a < 0⇒ b < 0] 
x (–  , 4]

 3. (x−3)(6−x)(x−8)2 > 0
 A. 3 <x> 10 and x 8
 B. 3 < x < 9
 C. 6 < x < 8 and x3
 D. 3 < x < 6
 E. 6 < x < 8
Answer:
(x−3)(6−x)(x−8)2 > 0
(x−3)(x−6)(x−8)2 < 0
As (x−8)2 is always positive, the sign of the above inequality depends on (x−3)(x−6)<0
So x should lie in between 3 and 6
Hence option 4

4. (x−3)√(x2)−2x−15 ≥ 0
   A. x ≥ 5
   B. x ≤ 5
   C.x ≥ −8
   D.x ≤ 3
   E.x ≥ −5
Answer:
(x−3)√(x2)−2x−15 ≥ 0
(x−3)√(x2)−5x+3x−15 ≥ 0
(x−3)√(x−5)(x+3) ≥ 0
The above inequality is valid for
x−5 ≥ 0
That is, x ≥ 5
Hence option 1

5.  6x−8/5−2x > 2
  A. 0.75 < x < 25 
  B. 0 < x < 5
  C. 2 < x < 5 
  D. 5 < X < 11
Answer:
6x−8/5−2x > 22   
6x−8/5−2x > 4
6x−8/5−2x−4 > 0
14x−28/5−2x > 0
x−2/2x−5 < 0
So, we have,
2 < x < 2.5
Hence option 5

6. |x2−12x| < 45

  A. −15 ≤ x ≤ 3
  B. 15 ≤ x ≤ −3
  C. 15 < x < −3
  D. −15 < x < 3
  E. −15 ≤ x < −3
Answer:
|x2−12x| < 45
We have  x2−12x < 45 and x2−12x > −45
 x2−12x−45 < 0--------- (1)  and x2−12x+45 > 0------(2)
Solving the first equation,
(x−15)(x+3) < 0
−3 < x < 15---------(3)
For second equation, b2−4ac = (−12)2−4.1.45 = 144−180 = −36 < 0
So no real solution exists.
So only −3 < x < 15 holds good.
Option 4.

7. |x2−5x| < 4x
 A.  x < 9
 B. 15 < x -3
 C. 1 < x < 9
 D. x > 1
 E. -9 < x < -1 
Answer|x2−5x|< 4x 
x2−5x < 4x and x2−5x > −4x
x2−5x−4x < 0 and x2−5x+4x > 0
x(x−9) < 0 and x(x−1) > 0
For x(x−9) < 0 we have x(0,9)
For x(x−1) > 0 we have x < 0 and x > 1
Taking the common region from above we get 1 < x < 9
Hence Option 3

8. log0.4(x2−13.5) ≥ −1
  A. −4 ≤ x ≤ 4
  B. x ≤ 5x ≤ 5   
  C. x ≥ 0 and x ≥ 0  
  D. x ≤ −5 and x ≥ 2
  E. x ≤ −4 and x ≥ 4
Answer :
log0.4(x2−13.5) ≥ −1
x2−13.5 ≥ 0.4(−1) 
x2−13.5 ≥ 2.5 
x2−16 ≥ 0
(x+4)(x−4) ≥ 0
x ≤ −4 and x ≥ 4
Hence option 5.

9. 9x2−10.3x+9 ≤ 0
  A. 1 < x < 2  
  B. 1 < x < 9
  C. 0 ≤ x ≤ 2
  D. 2 ≤ x ≤ 9
  E. None of these
Answer:
9x2−10.3x+9 ≤ 0
Let 3x=a
a2−10a+9 ≤ 0
a[1,9]
x[0,2]
Hence option 3.

 

10. A and B started a business with Rs.10000 and Rs.15000 respectively. After 6 months C joined them with Rs.20000.

Quantity I: B′s share in total profit of Rs.4,00,000 at the end of 2 years.

Quantity II: Annual Salary of Druv after-tax deduction if he earns Rs.20,000 per month and pays a tax of 20% each month.

 A. Quantity I < Quantity II 

 B. Quantity I >= Quantity II

 C. Quantity I = Quantity II

 D. Quantity I <= Quantity II

 E. Quantity I > Quantity II

solution:  Option A

Quantity I: A: B: C = 10000*24 : 15000*24 : 20000*18=2:3:3

B=3/8 *400,000= Rs.150000

Quantity II: Salary after deduction = 20,000*12*80/100 = Rs.192000

Hence, Quantity I < Quantity II

 

11. A bag contains 3 yellow, 4 black, and 2 white balls. Two balls are drawn at random.

Quantity I: Probability that none of the flowers drawn is white.

Quantity II: Fraction of work completed by Thanu in 7 days if she is 20% more efficient than Meenu who can complete the work in 12 days.

  A. Quantity I < Quantity II

  B. Quantity I <= Quantity II

  C. Quantity I > Quantity II

  D. Quantity I >= Quantity II

  E. Quantity I = Quantity II

solution:  Option A

Quantity I: 7C2/9C2=7/12

Quantity II: Meenu-> 10 days => fraction of work in 7 days = 7/10

Hence, Quantity I < Quantity II

 

12. Quantity I: The Simple interest on that sum at the rate of 20 % per annum for 2 years is Rs. 1000.

Quantity II: Rs. 2500

 A. Quantity I > Quantity II

 B. Quantity I >= Quantity II

 C. Quantity I < Quantity II

 D. Quantity I <= Quantity II

 E. Quantity I = Quantity II

solution:  Option E

Quantity I:

SI = pnr/100

1000= p * 20/100 * 2

p = Rs. 2500

Quantity II: Rs. 2500

Quantity I = Quantity II

 

13.  Quantity I: Find the volume of the sphere, whose radius is 10.5 cm.

Quantity II: Find the volume of the cone whose height and diameter is 3.5 cm and 16 cm respectively?

 A. Quantity I > Quantity II

 B. Quantity I >= Quantity II

 C. Quantity I < Quantity II

 D. Quantity I <= Quantity II

 E. Quantity I = Quantity II

solution:  Option A

Quantity I:Volume of the sphere = (4/3)*πr3 = 4/3 * 22/7 * 10.5 * 10.5 * 10.5 = 4851 cm3

Quantity II:Volume of the cone = (1/3)*πr2h = 1/3 * 22/7 * 16/2 * 16/2 * 3.5 = 234.66 cm3

Quantity I > Quantity II

     14.  3x+y = 81 and 81x-y = 3

Quantity I: value of x

Quantity II: value of y

 A.  Quantity I > Quantity II
 B. Quantity I ≥ Quantity II
 C. Quantity II > Quantity I
 D.  Quantity II ≥ Quantity I
 E. Quantity I = Quantity II or Relation cannot be established

Answer:  A

3x+y= 81

3x+y= 34

x +y= 4……. (i)

81x-y= 3

(34) x-y= 31

x –y= ¼ …….. (ii)

On solving, we get

x= 17/8

y= 15/8

Hence, Quantity I > Quantity II

      15. Quantity I: There are three numbers in the ratio 5: 6: 10. The sum of the largest and the smallest numbers is 126 more than the other number. Find the largest number?

Quantity II: 12 % of the first number is equal to 25 % of the second number. The difference between these two numbers is 78. Then find the largest number?

 A.  Quantity I > Quantity II
 B. Quantity I ≥ Quantity II
 C. Quantity II > Quantity I
 D. Quantity II ≥ Quantity I
 E. Quantity I = Quantity II or Relation cannot be established

 Answer:  C

Quantity I:

According to the question,

10x + 5x = 126 + 6x

15x – 6x = 126

9x = 126

X = 14

Largest number = 10x = 140

Quantity II:

(12/100)*x = (25/100)*y

(x/y) = (25/12)

x : y = 25 : 12

13’s = 78

1’s = 6

Largest number = 25x = 25*6 = 150

Quantity I < Quantity II

     16. A hemisphere of radius 4 cm is to be shipped in a shipping box of rectangular shape. The dimension of the box are consecutive odd numbers.
Quantity I: Minimum volume of box required to have the shipment possible.
Quantity II: 960 cm3
 A. Quantity I > Quantity II
 B. Quantity I ≥ Quantity II
 C. Quantity II > Quantity I
 D. Quantity II ≥ Quantity I
 E. Quantity I = Quantity II or Relation cannot be established

Option A
Solution:
I: The minimum length of any side of the rectangular box should be greater than the diameter of the hemisphere. Diameter of hemisphere=8; So for odd number, minimum length= 9, next side =11, next side=13
Volume=9*11*13= 1287 cm3

17. Quantity I:   Distance, if a man covers a distance of 22 hours. he covers first half at 15 km/hr and 2nd half at 18 km/hr
      Quantity II:   Distance, if a man covers a distance in three equal parts in 20 hours. He covers first part at 10 km/hr, 2nd at 15 km/hr and 3rd at 30 km/hr
 A. Quantity I > Quantity II
 B. Quantity I ≥ Quantity II
 C. Quantity II > Quantity I
 D. Quantity II ≥ Quantity I
 E. Quantity I = Quantity II or Relation cannot be established

 Option A
Solution:
Quantity I:
(2*15*18)/33 * 22 = 360 km
Quantity II:
Average speed will become 15 km/hr
So distance 15*20 = 300 km
I>II

Comments